O que é CUDA Inscreva-se hoje Introdução à programação paralela Um curso aberto e on-line de Instrutores de Udacidade: Dr. John Owens, UC Davis e Dr. David Luebke, NVIDIA CUDA reg é uma plataforma de computação paralela e um modelo de programação inventado pela NVIDIA. Permite aumentos dramáticos no desempenho do computador, aproveitando a potência da unidade de processamento gráfico (GPU). Com milhões de GPUs habilitadas para CUDA vendidas até o momento, desenvolvedores de software, cientistas e pesquisadores estão encontrando amplos usos para computação GPU com CUDA. Aqui estão alguns exemplos: Identificar a placa escondida nas artérias. Os ataques cardíacos são a principal causa de morte em todo o mundo. A Harvard Engineering, a Harvard Medical School e o Brigham Womens Hospital juntaram-se para usar GPUs para simular o fluxo sanguíneo e identificar placas ocultas sem técnicas invasivas de imagem ou cirurgia exploratória. Analisar o fluxo de tráfego aéreo. O Sistema Nacional do Espaço Aéreo gerencia a coordenação nacional do fluxo de tráfego aéreo. Os modelos de computador ajudam a identificar novas maneiras de aliviar o congestionamento e manter o tráfego de avião movendo-se eficientemente. Usando o poder computacional das GPUs, uma equipe da NASA obteve um grande ganho de desempenho, reduzindo o tempo de análise de dez minutos para três segundos. Visualize moléculas. Uma simulação molecular chamada NAMD (dinâmica molecular nanoescala) obtém um grande impulso de desempenho com GPUs. A aceleração é o resultado da arquitetura paralela de GPUs, que permite que os desenvolvedores do NAMD utilizem o CUDA Toolkit para as partes de uso intensivo da computação do aplicativo para o GPU. Background GPU Computing: The Revolution Youre enfrenta imperativos: melhore o desempenho. Resolva um problema mais rapidamente. O processamento paralelo seria mais rápido, mas a curva de aprendizado é íngreme, não é mais. Com o CUDA, você pode enviar códigos C, C e Fortran diretamente para GPU, não é necessário um idioma de montagem. Os desenvolvedores em empresas como Adobe, ANSYS, Autodesk, MathWorks e Wolfram Research estão despertando aquele gigante dormindo da GPU - para fazer computação científica e de engenharia de propósito geral em uma variedade de plataformas. Usando linguagens de alto nível, as aplicações aceleradas por GPU executam a parte seqüencial de sua carga de trabalho na CPU otimizada para o desempenho de um único segmento, enquanto aceleram o processamento paralelo na GPU. Isso é chamado de computação GPU. A computação GPU é possível porque a GPU da atualidade faz muito mais do que renderizar gráficos: chama com um teraflop de desempenho em ponto flutuante e tarefas de aplicativos crunches projetadas para qualquer coisa, desde finanças até medicamentos. O CUDA é amplamente implantado através de milhares de aplicativos e trabalhos de pesquisa publicados e apoiado por uma base instalada de mais de 375 milhões de GPUs habilitadas para CUDA em cadernos, estações de trabalho, clusters de computação e supercomputadores. Visite a Zona CUDA para obter exemplos de aplicações em diversos mercados verticais e desperte seu gigante de GPU. História da computação GPU As primeiras GPUs foram projetadas como aceleradores gráficos, suportando apenas pipelines específicas de função fixa. A partir do final da década de 1990, o hardware tornou-se cada vez mais programável, culminando na primeira GPU da NVIDIA em 1999. Menos de um ano depois de a NVIDIA ter cunhado o termo GPU, os artistas e desenvolvedores de jogos foram os únicos que faziam o trabalho inovador com a tecnologia: os pesquisadores eram Tocando sua excelente performance em ponto flutuante. O movimento de GPU de uso geral (GPGPU) surgiu. Mas o GPGPU estava longe de ser fácil naquela época, mesmo para aqueles que conheciam linguagens de programação de gráficos como o OpenGL. Os desenvolvedores tiveram que mapear cálculos científicos em problemas que poderiam ser representados por triângulos e polígonos. O GPGPU estava praticamente fora de limites para aqueles que não tinham memorizado as mais recentes APIs de gráficos até que um grupo de pesquisadores da Universidade de Stanford se propusesse reimaginar a GPU como um processador de streaming. Em 2003, uma equipe de pesquisadores liderada por Ian Buck revelou Brook, o primeiro modelo de programação amplamente adotado para estender o C com construções paralelas de dados. Usando conceitos como fluxos, kernels e operadores de redução, o compilador Brook e o sistema de tempo de execução expuseram a GPU como um processador de uso geral em uma linguagem de alto nível. Mais importante ainda, os programas de Brook não eram apenas mais fáceis de escrever do que o código GPU ajustado manualmente, eles eram sete vezes mais rápidos do que o código existente semelhante. A NVIDIA sabia que o hardware com rapidez e rapidez precisava ser acoplado a ferramentas de hardware e software intuitivas e convidou a Ian Buck para se juntar à empresa e começar a evoluir uma solução para executar C sem problemas no GPU. Ao juntar o software e o hardware, a NVIDIA apresentou o CUDA em 2006, a primeira solução mundial para computação geral em GPUs. Ferramentas e treinamento Hoje, o ecossistema CUDA está crescendo rapidamente à medida que mais e mais empresas fornecem ferramentas, serviços e soluções de classe mundial. Se você quiser escrever seu próprio código, a maneira mais fácil de aproveitar o desempenho das GPUs é com o CUDA Toolkit. Que fornece um ambiente de desenvolvimento abrangente para desenvolvedores C e C. O CUDA Toolkit inclui um compilador, bibliotecas de matemática e ferramentas para depuração e otimização do desempenho de seus aplicativos. Você também encontrará exemplos de código, guias de programação, manuais de usuário, referências de API e outras documentações para ajudá-lo a começar. A NVIDIA oferece tudo isso de forma gratuita, incluindo o NVIDIA Parallel Nsight para o Visual Studio, o primeiro ambiente de desenvolvimento da industrys para aplicações massivamente paralelas que usam GPUs e CPUs. Aprender a usar CUDA é conveniente, com treinamento on-line abrangente disponível, bem como outros recursos, como webinars e livros. Mais de 400 universidades e faculdades ensinam programação da CUDA, incluindo dezenas de Centros de Excelência CUDA e CUDA Research and Training Centers. Para os desenvolvedoresBarracuda Networks, Inc. Os dados de dados comuns de cotação de ações são fornecidos pela Barchart. Os dados refletem as ponderações calculadas no início de cada mês. Os dados estão sujeitos a alterações. O Green destaca o ETF com melhor desempenho nos últimos 100 dias. Descrição da Empresa (conforme arquivado na SEC) A Barracuda projeta e oferece soluções poderosas e fáceis de usar para proteção de dados e segurança. Oferecemos soluções habilitadas para a nuvem que capacitam os clientes a enfrentar ameaças de segurança, melhorar o desempenho da rede e proteger e armazenar seus dados. Nossas soluções são projetadas para simplificar as operações de TI para nossos clientes, permitindo-lhes aumentar seu retorno sobre o investimento em tecnologia. Nosso modelo de negócios baseia-se nos valores fundamentais de velocidade e agilidade, que aplicamos em todos os aspectos da nossa abordagem, incluindo nossas inovações tecnológicas, a entrega e implantação de nossas soluções e respostas às consultas dos clientes. Este modelo nos permitiu ser altamente escalável para alcançar um grande número de clientes potenciais. Desde o início, nossas soluções foram confiadas por mais de 150.000 organizações em todo o mundo. Mais. Gráfico de risco Onde CUDA se encaixa no gráfico de risco Tempo real após o horário Pré-mercado Notícias Citação do resumo das citações instantâneas Gráficos interativos Configuração padrão Observe que, uma vez que você faça sua seleção, ela se aplicará a todas as futuras visitas ao NASDAQ. Se, a qualquer momento, você estiver interessado em reverter as nossas configurações padrão, selecione Configuração padrão acima. Se você tiver dúvidas ou encontrar quaisquer problemas na alteração das configurações padrão, envie um email para isfeedbacknasdaq. Confirme a sua seleção: Você selecionou para alterar sua configuração padrão para a Pesquisa de orçamento. Esta será a sua página de destino padrão, a menos que você altere sua configuração novamente ou exclua seus cookies. Tem certeza de que deseja alterar suas configurações. Temos um favor a pedir. Desative seu bloqueador de anúncios (ou atualize suas configurações para garantir que o javascript e os cookies estejam habilitados), para que possamos continuar fornecendo as notícias de mercado de primeira linha E os dados que você espera esperar de nós.
No comments:
Post a Comment